////////////////////////////////////////////////////////////////////////////////
// Name: FloraPropagator2560-03Old 2019 ETHERNET version //
// http://robotigs.com/robotigs/includes/bots_header.php?idbot=17 //
// Robot that controls propagator //
// Platform: Arduino Mega 2560 //
// Created by: HARB rboek2@gmail.com januari 2019 GPL copyrights //
// Thanks to: Library DHT 2011 by Limor Frie, modified 2012 by Tom Igoe //
// https://github.com/PaulStoffregen/OneWire //
// <DS1302.h> Copyright (c) 2009, Matt Sparks //
// As outputs the following modules are mounted: //
// - Standard Arduino Onboard LED (PWM) //
// - 3 color LED (PWM) //
// - Activ loudspeaker //
// - 220 Vac Relay //
// As inputs the following modules are mounted: //
// - DS1307 Real Time Clock //
// - DHT22 air temperature and air humidity sensor //
// - LED //
// - CJMCU soil huidity sensor (TWI) //
// For communications are mounted: //
// - Standard Serial Monitor output //
// - Lan ENC28J60 unit //
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//3456789112345678921234567893123456789412345678951234567896123456789712345678//
// EEPROM MEMORY MAP: //
// Start End Number Description //
// 0000 0000 1 Never use this memory location to be AVR compatible //
// 0001 0001 1 wateringProg Usr choice: 1=off 2=on 3=auto RELAY1 //
// 0002 0003 2 wateringON If CAPAC reaches this 2byte treshold RELAY1 //
// 0004 0005 2 wateringSecs How many seconds to keep ON RELAY1 //
// 0006 0006 1 Temperature/10 airheater Switch ON RELAY2 (0-25,5) //
// 0007 0007 1 Temperature/10 airheater Switch OFF RELAY2 (0-25,5) //
// 0008 0008 1 Usr choice: airheater 1=off 2=on 3=auto RELAY2 //
// 0009 0009 1 Temperature/10 heat coil Switch ON RELAY3 (0-25,5) //
// 0010 0010 1 Temperature/10 heat coil Switch OFF RELAY3 (0-25,5) //
// 0011 0011 1 Usr choice: heatcoil 1=off 2=on 3=auto RELAY3 //
// 0012 0012 1 Number of hours around noon GROWLED RELAY4 //
// 0013 0013 1 /Usr choice: growled 1=off 2=on 3=auto RELAY4 //
////////////////////////////////////////////////////////////////////////////////
// SET PRECOMPILER OPTIONS *****************************************************
// Initialse conditional compiling, uncomment to include, comment to exclude -
// Do comment the next line for runtime versions -----------------------------
#define RS232 //Uncomment to include Serial Monitor sections
//#ifdef RS232 //Only include these lines if the variable has been defined
// Define the needed header files for the precompiler, no charge if not used -
#include <DHT.h> //Needed for DHT22 and DHT11 Temperature and humidity sensors
#include <EEPROM.h> //Needed for read or write in EEPROM
#include <OneWire.h> //Library can be installed through Arduino IDE DS18B20
#include <RTClib.h> //connected via I2C and Wire lib
#include <Wire.h> //Two Wire Interface
#include <UIPEthernet.h> //ENC28J60 by https://github.com/ntruchsess LAN
// Define precompiler variables, runs faster & doesn`t use RAM ---------------
// Define PINS ---------------------------------------------------------------
OneWire term1(17); //Connects to pin 17, but may be any DIO pin DS1820
#define ledRedPin 44 //3 Colour LED, which PWM pin connects RED LED
#define ledGrePin 45 //3 Colour LED, which PWM pin connects GREEN LED
#define ledBluPin 46 //3 Colour LED, which PWM pin connects BLUE LED
#define DHTPIN 4 //Which DIO input pin connects DHT22
#define DHTTYPE DHT22 //What sensor is connected (AM2302) (AM2321) DHT22
#define Relay1Pin 34 //220Vac DIO output pin connects WATERING RELAY1 KAPOT
#define Relay2Pin 36 //220Vac DIO output pin connects AIR HEATER RELAY2
#define Relay3Pin 38 //220Vac DIO output pin connects COIL HEATER RELAY3
#define Relay4Pin 40 //220Vac DIO output pin ILLUMINATION LED RELAY4
#define buzActPin A7 //Define DIO output pin connects ACTIV BUZZER
#define moistPin A8 //Analog input pin connects CAPACATIVE MOISTURE
#define moist2Pin A9 //Analog input pin connects CAPACATIVE 2 MOISTURE
#define moist3Pin A10 //Analog input pin connects CAPACATIVE 3 MOISTURE
//Define EEPROM variables ----------------------------------------------------
int wateringProg = 1; //Watering: 1=off 2=on 3=auto RELAY1
word propWaterON = 435; //If sensor CAPAC reaches this treshold RELAY1
word propWaterSecs = 300; //Number seconds watering will switch ON RELAY1
int airheatProg = 1; //Usr choice: airheater 1=off 2=on 3=auto RELAY2
int propAirheatON = 100; //Temperature/10 airheater Switch ON RELAY2
int propAirheatOFF = 130; //Temperature/10 airheater Switch OFF RELAY2
int heatCoilProg = 1; //Heatcoil 1=off 2=on 3=auto RELAY3
int propCoilON = 150; //Temperature/10 heatcoil ON RELAY3
int propCoilOFF = 160; //Temperature/10 airheater OFF RELAY2
int growLEDProg = 1; //GrowLED 1=off 2=on 3=auto RELAY4
int propLEDhours = 14; //Number of hours around noon RELAY4
//Define DATABASE VARIABLES --------------------------------------------------
bool propRelay1 = HIGH; //Status HIGH=off or LOW=on WATER RELAY1
bool propRelay2 = HIGH; //Status 1=off, 0=on AIRHEATER RELAY2
bool propRelay3 = HIGH; //Status HI=off, LW=on HEATCOIL RELAY3
bool propRelay4 = HIGH; //Status HI=off, LOW=on GROWLED RELAY4
word propCapac; //Moisture measured by CAPAC
word propCapacMin = 1023; //Minimum moisture measured in sequence by CAPAC
word propCapacMax = 0; //Maximum moisture measured in sequence by CAPAC
float propAirTemp; //Air temperature degree Celcius DHT22
float propAirHum; //Air humidity percentage DHT22
float propSoilTemp; //Soil temperature in Celsius DS18B20
String propKlok; //DateTime DS1307
word propCapac2; //Moisture measured by CAPAC
word propCapac2Min = 1023; //Minimum moisture measured in sequence by CAPAC
word propCapac2Max = 0; //Maximum moisture measured in sequence by CAPAC
word propCapac3; //Moisture measured by CAPAC
word propCapac3Min = 1023; //Minimum moisture measured in sequence by CAPAC
word propCapac3Max = 0; //Maximum moisture measured in sequence by CAPAC
//Define VARIABLES -----------------------------------------------------------
bool ledOnBoardVal = LOW; //You choose HIGH=on or LOW=off for LED_BUILTIN
byte msWait = 2; //Test your patience during the test LED
byte brillance = 0; //Brightness of any color, just to test PWM LED
char buf[100]; //Needed to display the date/time stamp DS1307
byte present = 0; //Used for oneWire, present = ds.reset() DS18B20
byte i; //Used for oneWire, loopcounter byte array DS18B20
byte data[12]; //Used for oneWire to store data read from DS18B20
byte type1_s = 0; //Type 0 = ok, except old DS1820=1, DS18B20
byte addr1[8]; //Array with first 8 bytes, inc/address DS18B20
String inStri = "No answer received"; //Default answer of ESP01
int starthours = 12 - (propLEDhours / 2); //Switch ON clock GROWLED
int finishhours = 12 + (propLEDhours / 2); //Switch OFF clock GROWLED
int currenthour; //Compare with starthours and finishhours for GROWLED
word readCounter = 0; //Read sensors if counted down to zero SENSORS
word readTimer = 9999; //Fill readCounter after reaching zero SENSORS
String commandStr = ""; //Commands received by html INTERNET
String html = ""; //Creating response string INTERNET
word bodyLength = 0; //Creating response string length INTERNET
int command = 0; //Which user command received by html INTERNET
String tempo = ""; //Can be used anywhere
int tmp1; //Can be used anywhere
int tmp2; //Can be used anywhere
uint8_t mac[6] = {0x00,0x01,0x02,0x03,0x04,0x05}; //LAN
// Ethernet MAC address - must be unique on your LAN
static unsigned long SwitchOFFtimer = millis()+ 300000; //WATERING
// Initialize OBJECTS --------------------------------------------------------
EthernetServer server(80); //Prepair an internet connection as server LAN
EthernetClient client; //Create an object for the internet connection LAN
DHT dht(DHTPIN, DHTTYPE); //Initialize sensor object DHT22
DS1307 rtc; //Initialize Real Time Clock object DS1307
//END OF PRECOMPILER OPTIONS ---------------------------------------------------
void setup() { // **************************************************************
disable_jtag(); //Disable jtag to free port C, enabled by default JTAG
//EEPROMfirstTime(); //First time use, set values in EEPROM
wateringProg = EEPROM.read(1); //Watering: 1=off 2=on 3=auto RELAY1
propWaterON = promReadWord(2); //If CAPAC reaches this treshold RELAY1
propWaterSecs = promReadWord(4); //How many seconds to keep ON RELAY1
airheatProg = EEPROM.read(6); //Usr choice: 1=off 2=on 3=auto RELAY2
propAirheatON = EEPROM.read(7); //Temperature/10 airheater ON RELAY2
propAirheatOFF = EEPROM.read(8); //Temperature/10 airheater OFF RELAY2
heatCoilProg = EEPROM.read(9); //Heatcoil 1=off 2=on 3=auto RELAY3
propCoilON = EEPROM.read(10); //Temperature/10 heatcoil ON RELAY3
propCoilOFF = EEPROM.read(11); //Temperature/10 heatcoil OFF RELAY3
growLEDProg = EEPROM.read(12); //GrowLED 1=off 2=on 3=auto RELAY4
propLEDhours = EEPROM.read(13); //Number of hours around noon RELAY4
starthours = 12 - (propLEDhours / 2); //Switch ON clock GROWLED
finishhours = 12 + (propLEDhours / 2); //Switch OFF clock GROWLED
pinMode(LED_BUILTIN, OUTPUT); //Arduino boards contain an onboard LED_BUILTIN
pinMode(buzActPin, OUTPUT); //Set this pin as output to BUZZER
pinMode(ledRedPin, OUTPUT); //Set this pin as output to redLED
pinMode(ledBluPin, OUTPUT); //Set this pin as output to blueLED
pinMode(ledGrePin, OUTPUT); //Set this pin as output to greenLED
analogReference(INTERNAL2V56); //Reduced to measure moisture CAPAC
pinMode(Relay1Pin, OUTPUT); //Set this pin as output to RELAY1
digitalWrite(Relay1Pin, propRelay1); //Switches OFF the RELAY1
pinMode(Relay2Pin, OUTPUT); //Set this pin as output to RELAY2
digitalWrite(Relay2Pin, propRelay2); //Switches OFF the RELAY2
pinMode(Relay3Pin, OUTPUT); //Set this pin as output to RELAY3
digitalWrite(Relay3Pin, propRelay3); //Switches OFF the RELAY3
pinMode(Relay4Pin, OUTPUT); //Set this pin as output to RELAY4
digitalWrite(Relay4Pin, propRelay4); //Switches OFF the RELAY4
Wire.begin(); //Start the Two Wire Interface object I2C DS1307
writeI2CRegister8bit(0x20, 6); //Reset sensor to tell it is a slave DS1307
dht.begin(); //Start sensor object running DHT22
Serial.begin(9600); //Nothing more needed for the Serial Monitor RS232
//Start objects --------------------------------------------------------------
rtc.begin(); //Initialize Wire.begin first. Start the object running DS1307
//rtc.adjust(DateTime(__DATE__, __TIME__)); //Set to time compiled DS1307
Ethernet.begin(mac); //Create connection IP address via DHCP LAN
server.begin(); //Start listening at he LAN
//Test hardware and software -------------------------------------------------
beep(10); //Create a test beep with KY-012 active BUZZER
DS1820_init(); //Determins the type of DS1820 and reads properties DS1820
test_LAN(); //Shows DHCP settings of LAN
test_LEDs(); //PWM fade in and fade out for all 4 LEDs on board LED
test_RELAY(); //Switches ON for 2 seconds the RELAY
beep(10); //Create a test beep with KY-012 active BUZZER
Serial.println("Setup completed"); //Show the user the setup is done RS232
} //End of setup ---------------------------------------------------------------
void loop() { //KEEP ON RUNNING THIS LOOP FOREVER *****************************
DateTime now = rtc.now(); //Read the current time into the object from DS1307
strncpy(buf,"YYYY-MM-DD hh:mm:ss\0",100); //Format string for the time DS1307
propKlok = now.format(buf); //Format the timestap into a variable DS1307
strncpy(buf,"hh\0",100); //Format string for the time GROWLED
tempo = now.format(buf); //Format the timestap into a variable GROWLED
currenthour = tempo.toInt(); //Convert to value for switching GROWLED
readSensors(); //Read several sensors at timed intervals only SENSORS
checkInternet(); //Check if a request available and if so then respond LAN
} //End of void loop() ----------------------- KEEP ON RUNNING THIS LOOP FOREVER
void readSensors() { //Read several sensors at timed intervals only ************
if (readCounter == 0){ //Only perform measurements if counted down TIMER
analogWrite(ledGrePin, 5); //Green HIGH=on, LOW=off activityLED
DS1820_read(); //Reads the temperature in Celsius from DS18B20
propAirTemp = dht.readTemperature(); //Read temperature as Celsius DHT22
propAirHum = dht.readHumidity(); //Reading takes 250 milliseconds DHT22
propCapac = analogRead(moistPin); //Moisture measured by CAPACATIVE1
if (propCapac < propCapacMin){ //Do some statistics MOISTURE MINIMUM
propCapacMin = propCapac; //Set MOISTURE MINIMUM
} //Do some statistics MOISTURE MINIMUM
if (propCapac > propCapacMax){ //Compare statistics MOISTURE MAXIMUM
propCapacMax = propCapac; //Set MOISTURE MAXIMUM
} //End of if (propCapac > propCapacMax) Some statistics MOISTURE MAXIMUM
propCapac2 = analogRead(moist2Pin); //Moisture measured by CAPACATIVE2
if (propCapac2 < propCapac2Min){ //Do some statistics MOISTURE MINIMUM
propCapac2Min = propCapac2; //Set MOISTURE MINIMUM
} //Do some statistics MOISTURE MINIMUM
if (propCapac2 > propCapac2Max){ //Compare statistics MOISTURE MAXIMUM
propCapac2Max = propCapac2; //Set MOISTURE MAXIMUM
} //End of if (propCapac2 > propCapac2Max) Some statistics MOISTURE MAXIMUM
propCapac3 = analogRead(moist3Pin); //Moisture measured by CAPACATIVE3
if (propCapac3 < propCapac3Min){ //Do some statistics MOISTURE MINIMUM
propCapac3Min = propCapac3; //Set MOISTURE MINIMUM
} //Do some statistics MOISTURE MINIMUM
if (propCapac3 > propCapac3Max){ //Compare statistics MOISTURE MAXIMUM
propCapac3Max = propCapac3; //Set MOISTURE MAXIMUM
} //End of if (propCapac2 > propCapac2Max) Some statistics MOISTURE MAXIMUM
readCounter = readTimer; //RESET the counter TIMER
refreshAnswer(); //Replace the old answer by a new one DATA
setActuators(); //Calculate and set all OUTPUTS
toggle_ledOnBoard(); //Toggles the LED_BUILTIN ON or OFF onboardLED
if (propRelay1 == LOW){ //Plant needs watering, WATERING IS ON
beep(1); //Create a test beep with KY-012 active BUZZER
} //End of if (propRelay1 == LOW) Plant needs watering, WATERING IS ON
Serial.println(html); //Show activity to the user RS232
digitalWrite(ledGrePin, LOW); //Blue HIGH=on, LOW=off activityLED
}else{ //Meaning counter was not yet zero TIMER
readCounter--; //Decrement of the timer counter TIMER
} //End of if (moistureCnt1 == 0)Perform measurements if counted down TIMER
} //Exit readSensors -----------------------------------------------------------
void setActuators(){ //Calculate and set all OUTPUTS ***************************
setRelay1(); //WATERING switch, calculate and set RELAY1
setRelay2(); //AIR HEATER switch, calculate and set RELAY2
setRelay3(); //COIL HEATER switch, calculate and set RELAY3
setRelay4(); //GROWLED switch, calculate and set RELAY4
} //Exit setActuators ----------------------------------------------------------
void checkInternet(){ //Check if a request available and if so then respond LAN
client = server.available(); //Listen for incoming clients LAN
if (client) { //We have an internet request LAN
commandStr = ""; //Reset the commands received INTERNET
digitalWrite(ledBluPin, HIGH); //Blue HIGH=on, LOW=off activityLED
Serial.println("-> New Connection\n"); //Show status on monitor RS232
boolean currentLineIsBlank = true; //An http request ends with a blank line
while (client.connected()) { //Start reading incoming request LAN
if (client.available()) { //Already received next byte from LAN
char c = client.read(); //Read next byte LAN
commandStr += c; //Add received character to command INTERNET
if (c == '\n' && currentLineIsBlank) { //Meaning request has ended LAN
if (isDigit(commandStr[5])){ //Check if we received any command
tempo = commandStr.substring(5, 7); //Extract command 01-99
command = tempo.toInt(); //Translate the function to a executable
switch (command) { //Go to the according procedure
case 1: //Command = 1 = Set program WATERINGPROG *******************
tempo = commandStr[8]; //Extract parameter 1=off 2=on 3=auto
wateringProg = tempo.toInt(); //Set actual program for WATERING
setRelay1(); //WATERING switch, calculate and set RELAY1
eepromWriteByte(1, wateringProg); //Set 1 byte EEPROM
break; //End of command == 1 translates to command is 1=Set program
case 2: //If CAPAC reaches treshold CAPAC switch WATERING ON *******
tempo = commandStr.substring(8, 12); //Extract parameter 0000-9999
propWaterON = tempo.toInt(); //Convert to decimal PARAMETER
setRelay1(); //WATERING switch, calculate and set RELAY1
eepromWriteWord (2, propWaterON); //Set 2 bytes EEPROM
break; ///End of if (command == 2) Set switch ON WATERING ----------
case 3: //How many seconds to keep ON RELAY1 b4 switch WATERING OFF
tempo = commandStr.substring(8, 12); //Extract parameter 0000-9999
propWaterSecs = tempo.toInt(); //Convert to decimal PARAMETER
setRelay1(); //WATERING switch, calculate and set RELAY1
eepromWriteWord(4, propWaterSecs); //Set 2 bytes EEPROM
break; //End of if (command == 3) Set switch OFF WATERING ----------
case 11: //Command = 11 = Set program AIR HEATER *******************
tempo = commandStr[8]; //Extract parameter 1=off 2=on 3=auto
airheatProg = tempo.toInt(); //Convert to decimal PARAMETER
setRelay2(); //AIR HEATER switch, calculate and set RELAY2
eepromWriteByte(6, airheatProg); //Set 1 byte EEPROM
break; //End of command == 1 translates to command is 1=Set program
case 12: //If Temperature reaches treshold switch AIR HEATER ON ****
tempo = commandStr.substring(8, 12); //Extract parameter 0000-0256
propAirheatON = tempo.toInt(); //Convert to decimal PARAMETER
setRelay2(); //AIR HEATER switch, calculate and set RELAY2
eepromWriteByte(7, propAirheatON); //Set 1 byte EEPROM
break; //End of if (command == 2) Set switch ON AIR HEATER ---------
case 13: //If Temperature reaches treshold switch AIR HEATER OFF ***
tempo = commandStr.substring(8, 12); //Extract parameter 0000-0256
propAirheatOFF = tempo.toInt(); //Convert to decimal PARAMETER
setRelay2(); //AIR HEATER switch, calculate and set RELAY2
eepromWriteByte(8, propAirheatOFF); //Set 1 byte EEPROM
break; //End of if (command == 3) Set switch OFF AIR HEATER --------
case 21: //Command = 21 = Set program COIL HEATER ******************
tempo = commandStr[8]; //Extract parameter 1=off 2=on 3=auto
heatCoilProg = tempo.toInt(); //Convert to decimal PARAMETER
setRelay3(); //COIL HEATER switch, calculate and set RELAY3
eepromWriteByte(9, heatCoilProg); //Set 1 byte EEPROM
break; //Case 21 Command = 21 = Set program COIL HEATER
case 22: //If Temperature reaches treshold switch COIL HEATER ON ***
tempo = commandStr.substring(8, 12); //Extract parameter 0000-0256
propCoilON = tempo.toInt(); //Convert to decimal PARAMETER
setRelay3(); //COIL HEATER switch, calculate and set RELAY3
eepromWriteByte(10, propCoilON); //Set 1 byte EEPROM
break; //Case 22 Temperature treshold switch COIL HEATER ON
case 23: //If Temperature reaches treshold switch COIL HEATER OFF **
tempo = commandStr.substring(8, 12); //Extract parameter 0000-0256
propCoilOFF = tempo.toInt(); //Convert to decimal PARAMETER
setRelay3(); //COIL HEATER switch, calculate and set RELAY3
eepromWriteByte(11, propCoilOFF); //Set 1 byte EEPROM
break; //Case 23 Temperature treshold switch COIL HEATER OFF
case 31: //Command = 31 = Set program GROWLED **********************
tempo = commandStr[8]; //Extract parameter 1=off 2=on 3=auto
growLEDProg = tempo.toInt(); //Convert to decimal PARAMETER
setRelay4(); //GROWLED switch, calculate and set RELAY4
eepromWriteByte(12, growLEDProg); //Set 1 byte EEPROM
break; //Case 31 Command = 31 = Set program GROWLED
case 32: //Number of hours around noon RELAY4 GROWLED ON ***********
tempo = commandStr.substring(8, 12); //Extract parameter 0000-0023
propLEDhours = tempo.toInt(); //Convert to decimal PARAMETER
starthours = 12 - (propLEDhours / 2); //Switch ON clock GROWLED
finishhours = 12 + (propLEDhours / 2); //Switch OFF clock GROWLED
setRelay4(); //GROWLED switch, calculate and set RELAY4
eepromWriteByte(13, propLEDhours); //Set 1 byte EEPROM
break; //Case 32 Number of hours around noon RELAY4 GROWLED ON
} //End of the list with possible precedures -------------------------
} //End of if (isDigit(commandStr[5])) Check if we received any command
Serial.println(" sendHttpResponse"); //Show status RS232
sendHttpResponse(); //Sends measurementsLAN
Serial.println(" Done sendHttpResponse"); //Status RS232
break; //We are done here so continue
} //End of if (c == '\n' && currentLineIsBlank) //Meaning end of request
if (c == '\n') { //Request has not ended yet you're starting a new line
currentLineIsBlank = true; //Now check if next one is also blank line
} else if (c != '\r') { //You've gotten a character on the current line
currentLineIsBlank = false; //So next character cannot finish request
} //End of if (c == '\n') { //Request has not ended yet
} //End of if (client.available()) //Already received next byte from LAN
} //End of while (client.connected()) //Start reading incoming request LAN
delay(10); //Give the web browser time to receive the data LAN
client.stop(); //Close the connection
Serial.println(" Disconnected\n"); //Show status on monitor RS232
propCapacMin = 1023; //RESET Statistics minimum moisture content MOISTURE
propCapacMax = 0; //RESET Statistics maximum moisture content MOISTURE
propCapac2Min = 1023; //RESET Statistics minimum moisture content CAPAC2
propCapac2Max = 0; //RESET Statistics maximum moisture content CAPAC2
propCapac3Min = 1023; //RESET Statistics minimum moisture content CAPAC3
propCapac3Max = 0; //RESET Statistics maximum moisture content CAPAC3
digitalWrite(ledBluPin, LOW); //Blue HIGH=on, LOW=off activityLED
} //End of if (client) { //We have an internet request LAN
} //Exit checkInternet ---------------------------------------------------------
void sendHttpResponse() { //Sends measurements LAN ****************************
refreshAnswer(); //Replace the old answer by a new one DATA
client.println("HTTP/1.1 200 OK"); //Start answer to the request INTERNET
client.println("Connection: close"); //Close after html is finished INTERNET
client.print("Content-Length: "); //Finish html after amount of chars INTERNET
client.println (bodyLength); //The amount of calculated characters INTERNET
client.println("Content-Type: text/html"); //Needed to be compatible INTERNET
client.println(" /n \n"); //Needed to end the headers INTERNET
client.println(html); //Broadcast the message to be shown in browser INTERNET
} //Exit sendHttpResponse ------------------------------------------------------
void refreshAnswer(void) { //Replace the old answer by a new one WIFI **********
if (String(propAirTemp) == " NAN"){ //Correct answer if not connected DHT22
propAirTemp = 99.1; //Both temperature and humidity will affected DHT22
propAirHum = -1; //Humidity value gives status not connected DHT22
}//End of String(propAirTemp) = " NAN" Answer corrected if not connected DHT22
html = (propKlok)+ " "; //DateTime DS1307
html += String(propSoilTemp)+ " "; //Soil temperature in Celsius DS18B20
html += String(propAirTemp) + " "; //Air temperature degree Celcius DHT22
html += String(propAirHum) + " "; //Air humidity percentage DHT22
html += String(propRelay1) + " "; //Status HIGH=off, LOW=on WATER RELAY1
html += String(propRelay2) + " "; //Status 1=off, 0=on AIRHEATER RELAY2
html += String(propRelay3)+ " "; //Status HI=off, LW=on HEATCOIL RELAY3
html += String(propRelay4)+ " "; //Status HI=off, LOW=on GROWLED RELAY4
html += String(wateringProg) + " "; //Watering: 1=off 2=on 3=auto RELAY1
html += String(propWaterON) + " "; //If CAPAC reaches this treshold RELAY1
html += String(propWaterSecs)+ " "; //How many seconds to keep ON RELAY1
html += String(airheatProg) + " "; //Air heater 1=off 2=on 3=auto RELAY2
html += String(propAirheatON) + " "; //Temperature/10 airheater ON RELAY2
html += String(propAirheatOFF) + " "; //Temperature/10 airheater OFF RELAY2
html += String(heatCoilProg)+ " "; //Heatcoil 1=off 2=on 3=auto RELAY3
html += String(propCoilON)+ " "; //TTemperature/10 heatcoil ON RELAY3
html += String(propCoilOFF)+ " "; //Temperature/10 heatcoil OFF RELAY3
html += String(growLEDProg)+ " "; //GrowLED 1=off 2=on 3=auto RELAY4
html += String(propLEDhours) + " "; //Number of hours around noon RELAY4
html += String(propCapac) + " "; //Moisture measured by CAPAC1
html += String(propCapacMin) + " "; //Minimum moisture in sequence by CAPAC1
html += String(propCapacMax) + " "; //Maximum moisture in sequence by CAPAC1
html += String(propCapac2) + " "; //Moisture measured by CAPAC2
html += String(propCapac2Min) + " "; //Minimum moisture in sequence by CAPAC2
html += String(propCapac2Max) + " "; //Maximum moisture in sequence by CAPAC2
html += String(propCapac3) + " "; //Moisture measured by CAPAC3
html += String(propCapac3Min) + " "; //Minimum moisture in sequence by CAPAC3
html += String(propCapac3Max); //Maximum moisture in sequence by CAPAC3
bodyLength = html.length(); //Calculate the number of characters to sent WIFI
} //Exit refreshAnswer ---------------------------------------------------------
void setRelay1(){ //WATERING switch, calculate and set RELAY1 ******************
if (SwitchOFFtimer < millis()) { //If propWaterSecs SWITCH WATER OFF RELAY1
propRelay1 = HIGH; //HIGH=off or LOW=on WATER RELAY1 SWITCH OFF
} //End of if (SwitchOFFtimer < millis propWaterSecs SWITCH WATER OFF RELAY1
switch (wateringProg) { //Watering program: 1=off 2=on 3=auto RELAY1
case 1: //Program = 1 = Set program WATERINGPROG OFF
propRelay1 = HIGH; //Status HIGH=off or LOW=on WATER RELAY1
break; //End of Program = 1 = Set program WATERINGPROG OFF
case 2: //Program = 2 = Set program WATERINGPROG ON
propRelay1 = LOW; //Status HIGH=off or LOW=on WATER RELAY1
break; //End of Program = 2 = Set program WATERINGPROG ON
case 3: //Program = 3 = Set program WATERINGPROG AUTO
if (propCapac > propWaterON and propRelay1 == HIGH) { //Treshold then ON
propRelay1 = LOW; //Status HIGH=off or LOW=on WATER ON RELAY1
SwitchOFFtimer = millis() + propWaterSecs*1000L; //Set SWTICH OFF TIME
Serial.print("Switch ON "); //Show activity to the user RS232
Serial.println(propKlok); //Show activity to the user RS232
} //End of If measurement reaches treshold then ON
break; //End of Program = 3 = Set program WATERINGPROG AUTO
} //End of switch wateringProg
digitalWrite(ledRedPin, !propRelay1); //RELAY1=ON --> LED RED=ON
digitalWrite(Relay1Pin, propRelay1); //Switches RELAY1
} //Exit setRelay1 -------------------------------------------------------------
void setRelay2(){ //AIR HEATER switch, calculate and set RELAY2 ****************
switch (airheatProg) { //AIR HEATER program: 1=off 2=on 3=auto RELAY2
case 1: //Program = 1 = Set program AIR HEATER OFF
propRelay2 = HIGH; //Status HIGH=off or LOW=on AIR HEATER RELAY2
break; //End of Program = 1 = Set program AIR HEATER OFF
case 2: //Program = 2 = Set program AIR HEATER ON
propRelay2 = LOW; //Status HIGH=off or LOW=on AIR HEATER RELAY2
break; //End of Program = 2 = Set program AIR HEATER ON
case 3: //Program = 3 = Set program AIR HEATER AUTO
if (propAirTemp < propAirheatON/10){ //If treshold measurement TURN ON
propRelay2 = LOW; //Status HIGH=off or LOW=on AIR HEATER ON RELAY2
} //End of If treshold measurement TURN ON
if (propAirTemp > propAirheatOFF/10){ //If treshold measurement TURN OFF
propRelay2 = HIGH; //Status HIGH=off or LOW=on AIR HEATER ON RELAY2
} //End of If treshold measurement TURN OFF
break; //End of Program = 3 = Set program AIR HEATER AUTO
} //End of switch AIR HEATER
digitalWrite(Relay2Pin, propRelay2); //Switches RELAY2
} //Exit setRelay2 -------------------------------------------------------------
void setRelay3(){ //COIL HEATER switch, calculate and set RELAY3 ***************
switch (heatCoilProg) { //COIL HEATER program: 1=off 2=on 3=auto RELAY3
case 1: //Program = 1 = Set program COIL HEATER OFF
propRelay3 = HIGH; //Status HIGH=off or LOW=on COIL HEATER RELAY3
break; //End of Program = 1 = Set program COIL HEATER OFF
case 2: //Program = 2 = Set program COIL HEATER ON
propRelay3 = LOW; //Status HIGH=off or LOW=on COIL HEATER RELAY3
break; //End of Program = 2 = Set program COIL HEATER ON
case 3: //Program = 3 = Set program COIL HEATER AUTO
if (propSoilTemp < propCoilON/10){ //If treshold measurement TURN ON
propRelay3 = LOW; //Status HIGH=off or LOW=on COIL HEATER ON RELAY3
} //End of If treshold measurement TURN ON
if (propSoilTemp > propCoilOFF/10){ //If treshold measurement TURN OFF
propRelay3 = HIGH; //Status HIGH=off or LOW=on COIL HEATER ON RELAY3
} //End of If treshold measurement TURN OFF
break; //End of Program = 3 = Set program COIL HEATER AUTO
} //End of switch COIL HEATER
digitalWrite(Relay3Pin, propRelay3); //Switches RELAY3
} //Exit setRelay3 -------------------------------------------------------------
void setRelay4(){ //GROWLED switch, calculate and set RELAY4 *******************
switch (growLEDProg) { //GROWLED program: 1=off 2=on 3=auto RELAY4
case 1: //Program = 1 = Set program GROWLED OFF
propRelay4 = HIGH; //Status HIGH=off or LOW=on GROWLED RELAY4
break; //Case 1 End of Program = 1 = Set program GROWLED OFF
case 2: //Program = 2 = Set program GROWLED ON
propRelay4 = LOW; //Status HIGH=off or LOW=on GROWLED RELAY4
break; //Case 2 End of Program = 2 = Set program GROWLED ON
case 3: //Program = 3 = Set program GROWLED AUTO
if (currenthour < starthours){ //Too early, GROWLED OFF
propRelay4 = HIGH; //Switch OFF , HIGH=off LOW=on GROWLED OFF
} //End of if (currenthour < starthours){ //Too early, GROWLED OFF
if (currenthour > finishhours){ //Too late, GROWLED OFF
propRelay4 = HIGH; //Switch OFF , HIGH=off LOW=on GROWLED OFF
} //End of if (currenthour > finishhours) Too late, GROWLED OFF
if (currenthour > (starthours-1) && currenthour <(finishhours)){ //ON
propRelay4 = LOW; //Switch ON , HIGH=off LOW=on GROWLED ON
} //End of if (currenthour > (starthours-1) && currenthour <(finishhours)
break; //Case 3 End of Program = 3 = Set program GROWLED AUTO
} //End of switch GROWLED
digitalWrite(Relay4Pin, propRelay4); //Switches RELAY4
} //Exit setRelay4 -------------------------------------------------------------
void DS1820_read(void) { //Reads the temperature from DS1820 in Celsius ********
term1.reset(); //Reset whatever still was running
term1.select(addr1); //Set the parameters for the library
term1.write(0x44); //Start conversion, with parasite power on at the end
delay(800); //Maybe 750ms is enough, maybe not, takes a lot of time though
present = term1.reset(); //We assume that the conversion is ready
term1.select(addr1); //Set the parameters for the library
term1.write(0xBE); // Read Scratchpad
for ( i = 0; i < 9; i++) { //We need 9 bytes
data[i] = term1.read(); //Read byte by byte
} //End of reading bytes
int16_t raw = (data[1] << 8) | data[0]; //Rotate the data
propSoilTemp = (float)raw / 16.0; //Untill they are in the correct position
} //Exit DS1820_read -----------------------------------------------------------
void DS1820_init(void) { //Determins the type of DS1820 thermometer1 ***********
if (!term1.search(addr1)) { //Term1 is an objest created by ONEWIRE
term1.reset_search(); //So if the variables are still empty
delay(250); //The variables must be filled and that costs some time
return; //Are you sure any DS1820 is connected
} //End of if (!term1.search(addr1))
if (OneWire::crc8(addr1, 7) != addr1[7]) {
return;
}
switch (addr1[0]) { //The first ROM byte indicates which tupe of chip
case 0x10:
type1_s = 1;
break;
case 0x28:
type1_s = 0;
break;
case 0x22:
type1_s = 0;
break;
default:
return;
}
term1.reset();
term1.select(addr1);
term1.write(0x44, 1); //Start conversion, with parasite power on at the end
delay(800); //Maybe 750ms is enough, maybe not, takes a lot of time though
present = term1.reset();
term1.select(addr1);
term1.write(0xBE); //Read Scratchpad
for ( i = 0; i < 9; i++) { //We need 9 bytes
data[i] = term1.read();
}
int16_t raw = (data[1] << 8) | data[0];
if (type1_s) {
raw = raw << 3; // 9 bit resolution default
if (data[7] == 0x10) { // "count remain" gives full 12 bit resolution
raw = (raw & 0xFFF0) + 12 - data[6];
}
} else { //// default is 12 bit resolution, 750 ms conversion time
byte cfg = (data[4] & 0x60);
// at lower res, the low bits are undefined, so let's zero them
if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
}
propSoilTemp = (float)raw / 16.0;
} //Exit DS1820_init -----------------------------------------------------------
unsigned int readI2CRegister16bit(int addr, int reg){ //Read any TWI register **
Wire.beginTransmission(addr);
Wire.write(reg);
Wire.endTransmission();
delay(20);
Wire.requestFrom(addr, 2);
unsigned int t = Wire.read() << 8;
t = t | Wire.read();
return t;
} //Exit readI2CRegister16bit --------------------------------------------------
void writeI2CRegister8bit(int addr, int value){ //Reset sensor DHT22 **********
Wire.beginTransmission(addr);
Wire.write(value);
Wire.endTransmission();
} //Exit writeI2CRegister8bit --------------------------------------------------
void eepromWriteByte(word place, int parameter){ //Set EEPROM 1 byte and REFRESH
EEPROM.write(place , parameter); //Setting must be an integer WRITE
} //Exit eepromWriteByte -------------------------------------------------------
void eepromWriteWord(word place, word parameter){ //EEPROM 2 bytes and REFRESH*
tmp1 = parameter/255; //Tmp1 contains the HIGH BYTE
EEPROM.write(place, tmp1); //Setting HIGH byte WRITE
tmp2 = parameter -(tmp1 * 255) ; //Calculate LOW BYTE
EEPROM.write(place + 1, tmp2); //Setting HIGH byte WRITE
} //Exit eepromWriteWord ------------------------------------------------------
word promReadWord(word address) { //EEPROM read a 2 byte word ******************
tmp1 = EEPROM.read(address); //Read the HIGH part of the word HIGH
tmp2 = EEPROM.read(address+1); //Read the LOW part of the word LOW
return tmp1*255 + tmp2; // Return the word value
} //Exit promReadWord ----------------------------------------------------------
void EEPROMfirstTime() { //First time use, set values in EEPROM ****************
EEPROM.write(1, 1); //Watering: 1=off 2=on 3=auto RELAY1
EEPROM.write(2, 1); //If CAPAC reaches this treshold HIGH RELAY1
EEPROM.write(3, 11); //If CAPAC reaches this treshold LOW RELAY1
EEPROM.write(4, 1) ; //How many seconds to keep ON HIGH RELAY1
EEPROM.write(5, 55); //How many seconds to keep ON LOW RELAY1
EEPROM.write(6, 1); //Air heater 1=off 2=on 3=auto RELAY2
EEPROM.write(7, 100); //Temperature/10 airheater ON RELAY2
EEPROM.write(8, 130); //Temperature/10 airheater OFF RELAY2
EEPROM.write(9, 1); //Heatcoil 1=off 2=on 3=auto RELAY3
EEPROM.write(10, 150); //Temperature/10 heatcoil ON RELAY3
EEPROM.write(11, 160); //Temperature/10 heatcoil OFF RELAY3
EEPROM.write(12, 1); //GrowLED 1=off 2=on 3=auto RELAY4
EEPROM.write(13, 14); //Number of hours around noon RELAY4
} //Exit EEPROMfirstTime -------------------------------------------------------
void test_LAN(){ //Shows DHCP settings of LAN **********************************
Serial.print ("Ethernet.localIP: ");
Serial.println(Ethernet.localIP());
Serial.print ("subnetMask: ");
Serial.println(Ethernet.subnetMask());
Serial.print ("gatewayIP: ");
Serial.println(Ethernet.gatewayIP());
Serial.print ("dnsServerIP: ");
Serial.println(Ethernet.dnsServerIP());
Serial.print ("ACTLOGLEVEL: ");
Serial.println(ACTLOGLEVEL);
Serial.print ("LOG_NONE: ");
Serial.println(LOG_NONE);
} //Exit test_LAN --------------------------------------------------------------
void test_RELAY(){ //Switches ON for 2 seconds all RELAY ***********************
digitalWrite(Relay1Pin, LOW); //Switches ON the RELAY1
delay (2000); //Wait for 2 seconds
digitalWrite(Relay1Pin, HIGH); //Switches OFF the RELAY1
digitalWrite(Relay2Pin, LOW); //Switches ON the RELAY2
delay (2000); //Wait for 2 seconds
digitalWrite(Relay2Pin, HIGH); //Switches OFF the RELAY2
digitalWrite(Relay3Pin, LOW); //Switches ON the RELAY3
delay (2000); //Wait for 2 seconds
digitalWrite(Relay3Pin, HIGH); //Switches OFF the RELAY3
digitalWrite(Relay4Pin, LOW); //Switches ON the RELAY4
delay (2000); //Wait for 2 seconds
digitalWrite(Relay4Pin, HIGH); //Switches OFF the RELAY4
} //End of test_Relay(){ Switches ON for 2 seconds the RELAY -------------------
void test_LEDs(void){ //PWM fade in and fade out for all 4 LEDs on board *******
brillance = 0; //Brightness of any color, just to test PWM LED
while (brillance<255){
analogWrite(ledRedPin, brillance); //Set LED to desired PWM value RED
brillance++;
delay (msWait);
}
while (brillance>0){
analogWrite(ledRedPin, brillance); //Set LED to desired PWM value RED
brillance--;
delay (msWait);
}
analogWrite(ledRedPin, 0); //Set LED to desired PWM value = off RED
while (brillance<255){
analogWrite(ledGrePin, brillance); //Set LED to desired PWM value GREEN
brillance++;
delay (msWait);
}
while (brillance>0){
analogWrite(ledGrePin, brillance); //Set LED to desired PWM value GREEN
brillance--;
delay (msWait);
}
analogWrite(ledGrePin, 0); //Set LED to desired PWM value = off GREEN
while (brillance<255){
analogWrite(ledBluPin, brillance); //Set LED to desired PWM value BLUE
brillance++;
delay (msWait);
}
while (brillance>0){
analogWrite(ledBluPin, brillance); //Set LED to desired PWM value BLUE
brillance--;
delay (msWait);
}
analogWrite(ledBluPin, 0); //Set LED to desired PWM value = off BLUE
while (brillance<255){
analogWrite(LED_BUILTIN, brillance); //Set to desired PWM value LED_BUILTIN
brillance++;
delay (msWait);
}
while (brillance>0){
analogWrite(LED_BUILTIN, brillance); //Set to desired PWM value LED_BUILTIN
brillance--;
delay (msWait);
}
analogWrite(LED_BUILTIN, 0); //Set LED to desired PWM value = off LED_BUILTIN
} //Exit test_LEDs -------------------------------------------------------------
void beep(uint8_t ms) { //Create a beep (x5ms) with KY-012 active BUZZER **
digitalWrite(buzActPin,HIGH); //Turn on BUZZER
while (ms > 0){ //Timer of the duration of the beep BUZZER
delay(5); //Wait milliseconds BUZZER
ms--; //Countdown untill we reached zero BUZZER
} //Timer of the duration has been counted down to zero BUZZER
digitalWrite(buzActPin,LOW); //Turn annoying sound off BUZZER
} //Exit beep ------------------------------------------------------------------
void toggle_ledOnBoard(void){ //Toggles the LED_BUILTIN on-board LED on or off *
ledOnBoardVal = !ledOnBoardVal; //Toggle value
digitalWrite(LED_BUILTIN, ledOnBoardVal); //Set Arduino boards onboard LED
} //Exit toggle_ledBin ---------------------------------------------------------
void disable_jtag(void) { //Disable jtag to free port C, enabled by default ****
#if defined(JTD) //Not all AVR controller include jtag
MCUCR |= ( 1 << JTD ); //Write twice to disable
MCUCR |= ( 1 << JTD ); //So stutter once
#endif //End of conditional compiling
} //Exit jtag_disable ----------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////
// PIN ALLOCATIONS TABLE ARDUINO MEGA 2560 //
// Board -Atmel- PIN - Function - External Connection FUNC //
// //
// CONNECTIONS RAILS RIGHT TOP: DIGITAL PWM<~> ****************************** //
// SCL - 43 - PD0 - SCL/INT0 - TWI //
// SDA - 44 - PD1 - SDA/INT1 - TWI //
// AREF - 98 - REF - AREF - REF //
// 13 PWM - 26 - PB7 - OC0A/OC1C/PCINT17 - LED Arduino LED_BUILTIN PWM //
// 12 PWM - 25 - PB6 - OC1B/PCINT16 - PWM //
// 11 PWM - 24 - PB5 - OC1A/PCINT5 - PWM //
// 10 PWM - 23 - PB4 - OC2A/PCINT4 - PWM //
// 9 PWM - 18 - PH6 - OC2B - PWM //
// 8 PWM - 17 - PH5 - OC4C - PWM //
// //
// CONNECTIONS RAILS RIGHT MIDDLE: DIGITAL PWM<~> *************************** //
// 7 PWM - 16 - PH4 - OC4B - PWM //
// 6 PWM - 15 - PH3 - OC4A - PWM //
// 5 PWM - 5 - PE3 - OC3A/AIN1 - PWM //
// 4 PWM - 1 - PG5 - OC0B - DHT22 room temperature PWM //
// 3 PWM - 7 - PE5 - OC3C/INT5 - INT //
// 2 PWM - 6 - PE4 - OC3B/INT4 - INT //
// 1 TX0 - 3 - PE1 - TXD0 - Serial monitor PC TX0 //
// 0 RX0 - 2 - PE0 - RXD0/PCINT8 - Serial monitor PC RX0 //
// //
// CONNECTIONS RAILS RIGHT BOTTOM: DIGITAL PWM<~> *************************** //
// 14 TX3 - 64 - PJ1 - TXD3/PCINT10 - TX3 //
// 15 RX3 - 63 - PJ0 - RXD3/PCINT9 - RX3 //
// 16 TX2 - 13 - PH1 - TXD2 - TX2 //
// 17 RX2 - 12 - PH0 - RXD2 - RX2 //
// 18 TX1 - 46 - PD3 - TXD1/INT3 - INT //
// 19 RX1 - 45 - PD2 - RXD1/INT2 - DS18B20 Soil temperature INT //
// 20 SDA - 44 - PD1 - SDA/INT1 - DS1307 I2C Clock TWI //
// 21 SCL - 43 - PD0 - SCL/INT0 - DS1307 I2C Clock TWI //
// //
// CONNECTIONS RAILS LEFT TOP: POWER **************************************** //
// NC - - - - Not Connected //
// IOREF - - - 3.3/5Vdc - Outputs controller voltage //
// 5V - 7 - VCC - VCC - VCC //
// RES - 1 - RES - PCINT14/RESET - RES //
// 3.3V - - - - //
// 5V - - - - //
// GND - - - - //
// GND - - - - //
// Vin - - - 7/9Vdc power in - //
// //
// CONNECTIONS RAILS LEFT MIDDLE : ANALOG IN ******************************** //
// A0 - 97 - PF0 - ADC0 - ADC //
// A1 - 96 - PF1 - ADC1 - ADC //
// A2 - 95 - PF2 - ADC2 - ADC //
// A3 - 94 - PF3 - ADC3 - ADC //
// A4 - 93 - PF4 - ADC4/TCK - ADC //
// A5 - 92 - PF5 - ADC5/TMS - ADC //
// A6 - 91 - PF6 - ADC6/TDO - ADC //
// A7 - 90 - PF7 - ADC7/TDI - Buzzer activ ADC //
// //
// CONNECTIONS RAILS LEFT BOTTOM: ANALOG IN ********************************* //
// A8 - 89 - PK0 - ADC8/PCINT16 - Moisture Capac 1 ADC //
// A9 - 88 - PK1 - ADC9/PCINT17 - Moisture Capac 2 ADC //
// A10 - 87 - PK2 - ADC10/PCINT18 - Moisture Capac 3 ADC //
// A11 - 86 - PK3 - ADC11/PCINT19 - ADC //
// A12 - 85 - PK4 - ADC12/PCINT20 - ADC //
// A13 - 84 - PK5 - ADC13/PCINT21 - ADC //
// A14 - 83 - PK6 - ADC14/PCINT22 - ADC //
// A15 - 82 - PK7 - ADC15/PCINT23 - ADC //
// //
// CONNECTIONS DOUBLE RAILS BOTTOM ****************************************** //
// Board -Atmel- PIN - Function - External Connection FUNC //
// 5V - - 5Vdc- 5Vdc - VCC //
// 5V - - 5Vdc- 5Vdc - VCC //
// 22 - 78 - PA0 - AD0 - DIO //
// 23 - 77 - PA1 - AD1 - DIO //
// 24 - 76 - PA2 - AD2 - DIO //
// 25 - 75 - PA3 - AD3 - DIO //
// 26 - 74 - PA4 - AD4 - DIO //
// 27 - 73 - PA5 - AD5 - DIO //
// 28 - 72 - PA6 - AD6 - DIO //
// 29 - 71 - PA7 - AD7 - DIO //
// 30 - 60 - PC7 - A14 - DIO //
// 31 - 59 - PC6 - A15 - DIO //
// 32 - 58 - PC5 - A13 - DIO //
// 33 - 57 - PC4 - A12 - DIO //
// 34 - 56 - PC3 - A11 - Relay1 DIO //
// 35 - 55 - PC2 - A10 - DIO //
// 36 - 54 - PC1 - A9 - Relay2 DIO //
// 37 - 53 - PC0 - A8 - DIO //
// 38 - 50 - PD7 - T0 - Relay3 DIO //
// 39 - 70 - PG2 - ALE - DIO //
// 40 - 52 - PG1 - RD - Relay4 DIO //
// 41 - 51 - PG0 - WR - DIO //
// 42 - 42 - PL7 - - DIO //
// 43 - 41 - PL6 - - DIO //
// 44 - 40 - PL5 - OC5C - 3 Color led Red PWM //
// 45 - 39 - PL4 - OC5B - 3 Color led Green PWM //
// 46 - 38 - PL3 - OC5A - 3 Color led Blue PWM //
// 47 - 37 - PL2 - T5 - DIO //
// 48 - 36 - PL1 - ICP5 - DIO //
// 49 - 35 - PL0 - ICP4 - DIO //
// 50 - 22 - PB3 - MISO/PCINT3 - Lan ENC28J60 SPI //
// 51 - 21 - PB2 - MOSI/PCINT2 - Lan ENC28J60 SPI //
// 52 - 20 - PB1 - SCK/PCINT1 - Lan ENC28J60 SPI //
// 53 - 19 - PB1 - SS/PCINT0 - Lan ENC28J60 SPI //
// GND - - GND - GND - GND //
// GND - - GND - GND - GND //
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//3456789112345678921234567893123456789412345678951234567896123456789712345678//
// EEPROM MEMORY MAP: Max 4096 bytes //
// Start End Number Description //
// 0000 0000 1 Never use this memory location to be AVR compatible //
////////////////////////////////////////////////////////////////////////////////
//345678911234567892123456789312345678941234567895123456789612345678971234567898
////////////////////////////////////////////////////////////////////////////////
// FUSES (can always be altered by using the STK500) //
// On-Chip Debug Enabled: off (OCDEN=0) //
// JTAG Interface Enabled: off (JTAGEN=0) //
// Preserve EEPROM mem through the Chip Erase cycle: On (EESAVE = 0) //
// Boot Flash section = 2048 words, Boot startaddr=$3800 (BOOTSZ=00) //
// Boot Reset vector Enabled, default address=$0000 (BOOTSTR=0) //
// CKOPT fuse (operation dependent of CKSEL fuses (CKOPT=0) //
// Brown-out detection level at VCC=2,7V; (BODLEVEL=0) //
// Ext. Cr/Res High Freq.; Start-up time: 16K CK + 64 ms (CKSEL=1111 SUT=11) //
// //
// LOCKBITS (are dangerous to change, since they cannot be reset) //
// Mode 1: No memory lock features enabled //
// Application Protect Mode 1: No lock on SPM and LPM in Application Section //
// Boot Loader Protect Mode 1: No lock on SPM and LPM in Boot Loader Section //
////////////////////////////////////////////////////////////////////////////////